
Outline

Architectures
Lecture 2

Lecturer: Mike Mchunu

School of Computer Science
Wits University

August 8, 2013

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Outline

Introduction
Architectural Styles
System Architectures

Centralized Architectures
Decentralized Architectures
Hybrid Architectures

Architectures versus Middleware
Interceptors
General Approaches to Adaptive Software

Self-management in Distributed Systems
The Feedback Control Model

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Introduction
Architectural Styles
System Architectures

Centralized Architectures
Decentralized Architectures
Hybrid Architectures

Architectures versus Middleware
Interceptors
General Approaches to Adaptive Software

Self-management in Distributed Systems
The Feedback Control Model

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Introduction

Distributed systems are complex, with components dispersed
across multiple machines.

Can master complexity in such systems through proper
organization.

Different ways of how organization of such systems can be
viewed.

Distinction between logical organization of software
components and the actual physical realization of these
systems.

Distributed system organization is mostly about software
components that constitute the system.

These software architectures tell us about the organization and
interaction of the different software components.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The actual realization of a distributed system is about placing
software components on real (physical) machines.

This can be done in several ways. An architecture may be
realized in a

centralized manner, with most components being placed on a
single machine, or it

decentralized manner, with most machines having more or less
the same functionality, or it

hybrid manner, which combines the above two realizations.

The final instantiation of a software architecture is referred to
as a system architecture.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Architectural Styles

Begin by considering logical organization of distributed systems into
software components (aka software architecture).

Software architecture research has matured.

Now commonly accepted that developing large systems
requires designing or adopting an architecture.

The concept of an architectural style is important. It is formulated
in terms of components. That is,

the way they are connected to each other

the data exchanged between them, and

how they are jointly configured into a system.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

What is a component?

A replaceable modular unit with well-defined required and
provided interfaces.

What is a connector?

A mechanism that mediates communication, coordination, or
cooperation among components.

A combination of components and connectors produces
various configurations.

These are classified into architectural styles.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

There are several architectural styles.

For distributed systems, the most important styles are:

1 Layered architectures

2 Object-based architectures

3 Data-centered architectures

4 Event-based architectures

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Layered Architectures

The components organized in layered fashion.

The component at layer Li can only invoke those at layer
Li−1, but not the other way round.

Model is highly adopted by the networking community.

Control flows from layer to layer.

Requests go down the hierarchy and the results flow upwards.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The following is a picture of a layered architecture:

Figure: Layered Architectural Style

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Object-based Architectures

Each object corresponds to a component.

Components connected through RPC mechanism.

Along with layered architectures, they form the most
important style for large software systems.

Object-based architecture shown below:

Figure: Object-based Architectural Style

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Data-centered Architectures

They are based on the idea that processes communicate
through a common (passive or active) repository.

A data-centered architecture is pictured as follows [1]:

Figure: Data-Centered Architectural Style

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Their principal goal is the integrability of data [1, 2].

These architectures are mainly characterized by access to
shared data [2].

The centralized data repository communicates with several
clients

The clients are independent entities, which can be modified
without affecting other clients [2].

It is also easy to add new clients.

Three protocols are used: communication, data definition and
data manipulation.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Event-based architectures

In [3], an event-based architecture (EBA) is defined as follows:

An EBA is an architecture based on parts that
interact solely or predominantly using event
notifications, instead of direct method calls.

Event notification refers to a signal containing information
regarding an event detected by the sender.

There are a number of communication styles:
publish/subscribe, broadcast, point-to-point.

Processes communicate by propagating events.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

In distributed systems, event propagation is associated with
publish/subscribe systems.

Events are published.

The only processes that are notified of these events are the
ones that have subscribed to receive them.

For example, a process subscribing to a particular service and
in turn receiving email updates.

Sender and receiver are decoupled.

They communicate asynchronously.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

An event-based architecture is shown below:

Figure: Event-Based Architectural Style

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Focusing on publish/subscribe systems, we discuss their
advantages and disadvantages.

Advantages

Loosely coupled [4, 5]

Publishers and subscribers loosely coupled, each being
able to operate on its own. regardless of the other.

The term referentially decoupled is used to denote the
fact that these loosely coupled processes do not have to
explicitly refer to each other.

Scalable

Systems are scalable when their size is relatively small.

However, this benefit is lost when systems scale up, with
many servers being supported.

Disadvantages [5]

Decoupling publisher from subscriber may lead to incorrect or
damaging messages.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Shared Data-space Architectural Style

Combining event-based architectures with data-centered
architectures produces a shared data-space architecture,
shown below:

Figure: Shared Data-Space Architectural Style

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Such architecture may be used in several ways. For example

Shared distributed file systems.

Web-based distributed systems.

Asynchronous communication between processes

Advantage?

Process decoupled in time.

When communication occurs, not necessary for both processes
to be active.

“Descriptive” reference

Instead of explicit reference, a descriptive SQL-like interface is
used to access data in the repository.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Importance Of Software Architectures

They all seek to achieve distribution transparency.

However, distribution transparency requires trade-offs between
performance, fault tolerance, ease-of-programming, etc.

Different distributed applications must be solved using
different applications/architectures.

There is no way a single distributed system can cover 90% of
all possible cases.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

System Architectures

What is a system architecture?

An instance of a distributed system that results after deciding
on software components, their interaction, and their placement
(on physical machines).

Depending on placement, we get the following distributed
system architectures:

Centralized architectures.

Decentralized architectures.

Hybrid architectures.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Centralized Architectures

Based on client-server model.

Processes divided into two groups.

A server process that implements a specific service.

A client process that requests a service from a server.

Client-server interaction (request-reply) shown below:

Client

Request Reply

Server
Provide service Time

Wait for result

Figure: General interaction between a client and a server

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

When network is fairly reliable, as is the case with many
LANs, client and server can use a simple connectionless
protocol to communicate.

Examples of this protocol include the Internet Protocol (IP)
and the User Datagram Protocol (UDP).

A few issues to consider (read page 37 textbook):

How does the idea of a connectionless protocol “work”?

What is its advantage?

What is the disadvantage of using such a protocol?

What is an idempotent operation?

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Can also get client and server to communicate using reliable
connection-oriented protocol.

Not wholly appropriate in LANs, due to low performance.

OK in WANs, where communication is inherently unreliable.

How does this protocol “work”? (Revision: read about it).

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Application Layering (Centralized Architectures)

Many client-server applications are geared to support user
access to databases.

So, many people advocate distinction between following three
levels, as in layered architectural style:

1 The user-interface level.

2 The processing level.

3 The data level.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Internet search engine’s organization into three layers:

Database
with Web pages

Query
generator

Ranking
algorithm

HTML
generator

User interface

Keyword expression

Database queries

Web page titles
with meta-information

Ranked list
of page titles

HTML page
containing list

Processing
level

User-interface
level

Data level

Figure: Simplified Internet search engine organization

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

User-interface level

contains facilities for direct interface with users, such as GUIs.

Processing level

Contains data processing applications - the core functionality.

Data level

Manages data being acted on.

Interacts with database or file system.

Data usually persistent. Exists even when not being accessed
by client.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Read the following examples (pages 39-40 of textbook):

Example 1: Internet search engine.

Interface level: Accepts a keyword string.
Processing level: Processes for generating database queries,
rank replies and format response.
Data level: Database containing web pages.

Example 2: Decision support system.

Interface level: Accepts somewhat complex input than simple
search.
Processing level: Methods and techniques from AI and
statistics for financial data analysis.
Data level: Database containing financial information.

Example 3: Desktop package.
Interface level: Access to documents and data.
Processing level: Word processing, database queries,
spreadsheets, etc.
Data level: file systems and/or databases.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Multitiered Architectures (Centralized Architectures)

Two-tier and three-tier architectures are the most common.

Two-tier Architectures

Distinction into three logical levels makes it possible to
physically distribute a client-server application across several
machines.

Simplest organization is to have only two types of machines:

1 A client machine with programs that implement (part of)
user-interface level.

2 A server machine containing programs that implement
processing and data levels.

In this organization, server handles everything and client is a
dumb terminal, possibly with a pretty graphical interface.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Clients and servers can be organized by distributing programs
in application layer across different machines.

User interface User interface User interface

Application

User interface

Application

User interface

Application

Database

ApplicationApplication Application

Database Database Database Database Database

User interface

(a) (b) (c) (d) (e)

Client machine

Server machine

Figure: Alternative client-server organizations (a)-(e)

There are two kinds of machine: client and server. This leads
to a (physically) two-tiered architecture.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

A note about client-server organizations

In one extreme, server performs processing and manages data.
The client only provides a simple graphical interface (thin
client).

At the other extreme, client does all application processing,
and also stores some data (fat client).

Study and understand the descriptions on possible
client-server organizations that can be realized (pages 41-42
of textbook).

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Three-tiered Architecture

So far, distinction only made between client and server
machines.

However, a server may need to act as a client, leading to a
(physically) three-tiered architecture, shown below:

User interface
(presentation)

Application
server

Database
server

Request
operation

Time

Wait for result

Request data Return data

Return
result

Wait for data

Figure: An example of a server acting as a client

Here, programs forming part of processing level reside on a
separate server, but may additionally be partly distributed
across client and server machines.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

A separate processor may be used for each application
architecture layer.

Advantages of the architecture [6]

Better performance compared to thin-client approach.

Simpler to manage, compared to fat-client approach.

More scalable architecture. With increasing demand, possible
to add more servers.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Useful picture (3-tier Internet banking system [6])

Figure: An Internet banking system

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Decentralized Architectures

We focus on two types of distribution: vertical and horizontal
distribution.

Vertical Distribution

Achieved by placing logically different components on different
machines.

Exhibited by traditional client-server architectures.

Where each level serves a different purpose in the system.

It distributes the traditional server functionality over multiple
servers [7].

Advantage of having a vertical distribution?

Functions are logically and physically split across multiple
machines.

Each machine is tailored to a specific group of functions.Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Useful picture - vertical distribution (adapted from [7])

Figure: The vertical distribution communication architecture

The first server receives the client’s request.

The request is passed on to the next server, and so on, until
the last server is reached.

To fulfill the client’s request, each server does its bit in its
own tier (step).

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Benefits? Scalability and flexibility [7]

Scalability improved since, with each server having less
processing load, the system is able to take up more users.

The internal functionality of each server can be modified,
which makes the architecture flexible.

Horizontal Distribution

More common in modern architectures.

Involves distribution of clients and servers.

A client or server is physically split up into logically equivalent
parts.

Each part operates on its own share of complete data set, thus
balancing the load.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Useful picture [7]

Figure: Horizontal distribution - Web services example

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Each server computer has its own copy of all hosted Web
pages.

The servers handle client requests in round robin fashion.

Benefits? Scalability and reliability.

Scalability is achieved by using a number of servers, thereby
reducing the load on each server.

Since each server contains the same web pages, such
redundancy provides reliability.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Peer-to-peer (P2P) Systems (Decentralized Architectures)

A class of modern system architectures that support
horizontal distribution.

Resources are distributed and shared among peers (user
processes).

Tasks that must be performed are performed by every process
that forms part of the distributed system.

Characteristics of P2P systems.

All processes in a P2P system are equal.

The processes interact symmetrically.

Each process acts as client and server at the same time (i.e.,
acting as a servent).

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Useful picture (P2P network - adapted from [7])

Figure: Peer-to-peer Communication Architecture

In this figure, each process acts as client and server

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

A large number of nodes may participate in a P2P network.

This makes it difficult for nodes to keep track of each other,
and the information each one has.

To minimize this problem, the nodes are arranged in an
overlay network.

This is a virtual network the nodes form among themselves.

The network is built on top of a physical network.

A connection between two overlay nodes may consist of several
physical connections

A node wanting to send a message to another node locates the
node by sending a request along the overlay network links.

Once the target node has been located, the two nodes are
then able to communicate

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Useful picture: Overlay network [7]

Figure: Overlay Network Example

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

There are two types of overlay networks: structured and
unstructured.

In both, a node in the network maintains a list of its neighbours
(referred to as its partial view)

Structured Peer-to-Peer Architectures

The nodes are organized using a distributed hash table (DHT).

Generally, a hash function converts a key to a hash value that
is used to index a hash table.

In a DHT-based system, data items are assigned a random key
from a large identifier space, such as a 128-bit or 160-bit
identifier.

Nodes also assigned random numbers from the same identifier
space.

The key is to implement an efficient scheme that uses some
distance metric to uniquely map a data item’s key to a node’s
identifier.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Looking up a data item returns the network address of the
node that stores that data item.

DHT characteristics

Scalable: To thousands and millions of network nodes.
Slow increase of search time with size (i.e., O(log(N)).

Fault tolerant: In the event of node failure, system is able
to re-organize itself.

Decentralized: No central coordinator.

Example: Chord - A Structured P2P System

Each data item gets assigned a random key from a large
identifier space.

Each node gets assigned a random identifier from the
same identifier space.

Nodes logically organized in a ring such that data item
with key k is mapped to a node with smallest identifier
id≥k.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

This node is referred to as the successor of key k and denoted
as succ(k), as shown below.

0
15

214

313

412

8 79

610

511

1
Actual node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15} {0,1}

Associated
data keys

Figure: The mapping of data items onto nodes in Chord

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

To look up an item, an application running on arbitrary
node calls function LOOKUP(k), which returns the
network address of succ(k).

The application contacts the node (succ(k)), from
which it obtains a copy of the required data item.

Membership management in Chord

A node joining the system generates a random identifier id.

It then performs a lookup on id (LOOKUP(id)), which
returns the network address of succ(id).

At that point, the joining node can contact succ(id)
and its predecessor and insert itself in the ring.

A node id leaves ring by informing its successor and
predecessor of its departure and transferring its data
items to succ(id).

Similar approaches used in other DHT-based systems
(Read about CAN networks pp. 45-46 of textbook).

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Unstructured Peer-to-Peer Architectures

The overlay network is constructed as a random graph, using
randomized algorithms.

Main idea

Each node keeps a randomly constructed list of neighbours.

Nodes also contain randomly placed data items

A node looking for a specific data item floods network with a
search query.

Basic model

Each node has a list of c neighbours, each representing a
randomly chosen live node from current set of nodes.

The list of neighbours constitute a partial view.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Membership management

A node joins the network by contacting any node from a list
of well-known access points.

A node simply leaves the network, without notifying any other
node.

This architecture is OK for small-to-medium sized networks.
However, it does not scale well.

It is used in systems such as Gnutella and Freenet.

Note: Do NOT read the part on Topology Management of
Overlay Networks (pages 49-50 of textbook).

Note: You MUST read the part on Superpeers (pages 50-52
of textbook)

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Superpeers

The growth of the network in unstructured peer-to-peer
systems makes it difficult to locate data.

It is difficult to find a way of routing a lookup request to a
specific data item. So, one option a node has is to flood the
system with its request.

The alternative is to use special nodes, known as superpeers,
that maintain an index of data items.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Superpeers often organized in peer-to-peer network, leading to
a hierarchical organization:

Superpeer

Regular peer

Superpeer
network

Figure: A hierarchical organization of nodes into a superpeer network

Every regular peer is a client of a superpeer, which also
controls all communication to and from the regular peer.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The client-superpeer relation is mostly fixed. A regular peer
joining the network attaches itself to one of the superpeers. It
remains there until it leaves the network.

Superpeer networks introduce a new problem. That is, how do
we select the nodes that are destined to be superpeers?

This problem closely related to leader-election problem, which
deals with electing superpeers in a peer-to-peer network.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Hybrid Architectures

Many distributed systems combine architectural features.

We look at distributed systems that combine client-server
solutions with decentralized architectures.

Edge-Server Systems

Their organization is based on a hybrid architecture.

They are deployed on the Internet, with their servers being
situated “at the edge” of the network.

The edge is formed by the boundary between enterprise
networks and the actual Internet.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Clients connect to the Internet via the edge server.

We can consider an ISP as an edge server, where users connect
to the Internet via their ISPs.

Edge server

Core Internet

Enterprise network

ISP ISP

Client Content provider

Figure: The Internet as consisting of a collection of edge servers

Edge server serves content, after applying filtering and
transcoding functions.

In an organization, a single edge server can be used as an
origin server that generates all content.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Collaborative Distributed Systems

These systems also contain hybrid structures.

Their main objective is to support collaboration between
communicating entities.

These systems “start off” by using a traditional client-server
scheme.

Then, after joining system, a node uses a fully decentralized
scheme for collaboration.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Example 1: BitTorrent

A file-sharing system that uses the P2P scheme for
downloading files.

Useful picture

Node 1

Node 2

Node N

.torrent file
for F

A BitTorrent
Web page

List of nodes
storing F

Web server File server Tracker

Client node
K out of N nodes

Lookup(F)

Ref. to
file

server

Ref. to
tracker

Figure: The principal working of BitTorrent

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

An end user looking for a file downloads chunks of it from
other users. These chunks are then assembled to produce the
complete file

An important design goal behind BitTorrent was to ensure
collaboration.

A file can only be downloaded on condition the downloading
client is providing content to someone else (so-called
“tit-for-tat” approach).

Read the details on how BitTorrent files are downloaded (last
two paragraphs, pages 53-54 of textbook).

Example 2: Read about the Globule system, on page 54 of
textbook.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Architectures versus Middleware

Middleware forms layer between applications and distributed
platforms:

Local OS 1 Local OS 2 Local OS 3 Local OS 4

Appl. A Application B Appl. C

Computer 1 Computer 2 Computer 4Computer 3

Network

Distributed system layer (middleware)

Figure: A distributed system organized as middleware

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Important purpose is to provide degree of distribution
transparency.

We want to hide from applications aspects such as data
distribution, processing and control.

Middleware systems follow a specific architectural style.

Many middleware solutions, such as CORBA, have adopted an
object-based architectural style.

Others, such as TIB/Rendezvous, follow event-based
architectural style.

Using middleware of a particular architectural style makes it
simpler to design applications.

But, the middleware may no longer be suitable for the
application developer’s purpose.

For example, adding new features to the middleware may yield
bloated middleware solutions.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Middleware is meant to provide distribution transparency.

However, specific middleware solutions should be modified to
suit application requirements.

One solution is to come up with several versions of a
middleware system.

Each version is tailored to a specific class of applications.

A better approach is to come up with middleware systems
that are easy to configure, adapt and customize, as required
by an application.

Using several mechanisms, the behaviour of middleware can
be modified.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Interceptors

This is a software construct that breaks the usual flow of
control and allows other code to be executed.

Making interceptors generic requires substantial
implementation effort.

On other hand, limited interception improves management of
the software and the distributed system as a whole.

Example: Interceptors in object-based distributed systems.

Consider an object A calling a method belonging to another
object B, located on a different machine.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

This remote-object invocation follows a three-step approach:

1 A’s local interface is the same as B’s. A calls a method
available in that interface.

2 A’s call is changed into a generic object invocation.

3 The generic object invocation is transformed into a message
that is sent through the transport-level network interface
offered by A’s local OS.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The scheme “works” as follows:

Client application

B.do_something(value)

invoke(B, &do_something, value)

send([B, "do_something", value])

Request-level interceptor

Message-level interceptor

Object middleware

Local OS

Application stub

To object B

Nonintercepted call

Intercepted call

Figure: Using interceptors to handle remote-object invocation

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

After the first step, the call

B.do_something(value)

is transformed by the interceptor into a general call such as

invoke(B,&do_something,value),

with a reference to B’s method and the parameters that go
along with the call.

Suppose object B is replicated.

In such a situation, each replica should be invoked.

This is a case where interception is able to help.

The request-level interceptor calls

invoke(B,&do_something,value),

for each of the replicas.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The good thing about this is that object A need not be aware
of the replication of B. The middleware also does not need
any special components to handle this replicated call.

Only the request-level interceptor, which may be added to the
middleware, needs to know about B’s replication.

The call to the remote object B must be conveyed over the
network, which requires that the messaging interface offered by
the local OS be invoked.

A message-level interceptor will be used to transfer the
invocation to the target object.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

General Approaches to Adaptive Software

Interceptors offer the means to adapt the middleware.

Adaptation is necessitated by continuous changes in the
distributed application environment.

These changes are due to several factors: mobility, strong
variance in the quality-of-service of networks, failing hardware
and battery damage.

The middleware, and not the applications, must be able to
react to these changes.

These strong environmental influences have prompted
middleware designers to consider constructing adaptive
software.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Adaptive software has not lived up to its promise.

However, it is considered by many researchers and developers
to be an important aspect of distributed systems.

The following techniques “characterize” software adaptation:

1 Separation of concerns

Separate the parts that implement functionality from those
that take care of other things (i.e. extra functionalities).

2 Computational reflection

The ability of a program to inspect itself and, if necessary,
adapt its behaviour.

3 Component-based design

It supports adaptation through composition.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The Feedback Control Model

Focus on organization of distributed systems as high-level
feedback-control systems catering for automatic adaptations
to changes.

Phenomenon is also known as autonomic computing or
self-star systems.

There are different views regarding self-managing systems.

However, the common assumption is that adaptations occur
through one or more feedback control loops.

Systems organized on this basis are known as feedback control
systems.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The following figure illustrates the basic idea of a feedback
control system.

Core of distributed system

Metric
estimation

Analysis

Adjustment
measures

+/-
+/-

+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Figure: The logical organization of a feedback control system

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

The components being managed form the core of feedback
control system.

Assumption: Components are driven through controllable input
parameters.

However, their behaviour may be influenced by all kinds of
uncontrollable input, also known as disturbance or noise input.

Three elements constitute a feedback control loop.

First, the system must be monitored by measuring its various
aspects.

Measuring such behaviour is not easy.

Another problem is when a node A must estimate the latency
between two other completely different nodes B and C,
without being able to intrude on either two nodes.

For these reasons, a feedback control loop contains metric
estimation component.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

Another part of a feedback control loop analyzes
measurements and compares them to reference values.

This feedback analysis component forms the heart of the
control loop.

It contains algorithms to be used when adaptations need to be
made.

The last group of components contain mechanisms that
influence system behaviour.

The analysis component will trigger one or several of these
mechanisms, and later observe the effect.

Reading Task: Study Section 2.4.3 Differentiating
Replication Strategies in Globule: pp. 63-65 of textbook).
Include Section 2.4.3.

Do NOT read Section2.4.4.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

References I

TU Graz, 2008. Architectural Styles,
http://coronet.iicm.tugraz.at/sa/s5/sa styles.html

Pree W., 2005. Architectural styles (according to CMU’s SEI),
http://www.softwareresearch.net/fileadmin/src/.../02 ArchStyles

Dr Dobb’s, 2008. Event-Based Architectures,
http://drdobbs.com/architecture-and-design/208801141

Tanenbaum A. S., Van Steen M., 2007. Distributed Systems -
Principles and Paradigms, Second Edition, Prentice Hall.

Wikepedia, 2011. Publish/subscribe,
http://en.wikipedia.org/w/index.php,last modified on 22
September 2011 at 09:56.

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

Outline

Introduction
Architectural Styles
System Architectures
Architectures versus Middleware
Self-management in Distributed Systems

References II

Sommerville I., 2004. Software Engineering, 7th Edition,
Chapter 12.

Kuz I., Rauch F., Chakravarty M. M. T., Heiser G.
COMP9243 - Week 2 (10s1), The University of New South
Wales, School of Computer Science & Engineering

Lecturer: Mike Mchunu Advanced Operating Systems (COMS4001)

	Outline
	Introduction
	Architectural Styles
	System Architectures
	Architectures versus Middleware
	Self-management in Distributed Systems

